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Generalized momentum method to describe high-frequency solitary wave propagation in system
with varying dispersion
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We present a generalized momentum method to describe the evolution of the averaged~integral! pulse
characteristics in nonlinear systems with periodically modulated dispersion and nonlinearity. A closed system
of the ordinary differential equations is derived for averaged pulse power, width, and chirp. As a particular
example, the developed theory is applied to the practical problem of the optical soliton transmission in
dispersion-managed fiber links.@S1063-651X~98!51211-1#

PACS number~s!: 03.40.Kf, 42.65.Tg, 42.81.Dp
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High-frequency pulse propagation in the nonlinear syst
with Kerr-like nonlinearity and periodically varying dispe
sion is governed by the nonlinear Schro¨dinger equation
~NLSE! with periodic coefficientsd(z) andc(z):

iAz1d~z!Att1c~z!uAu2A50. ~1!

This model is rather generic because it is derived under
very general assumptions: first, a high carrier frequency
the propagating wave packet and approximation of the
persion curve near the carrier frequency by parabola@the
second term in Eq.~1!#, and second, the nonlinear part of th
refractive index is assumed to be proportional to the inten
of the electric field~Kerr-type nonlinearity! @the third term in
Eq. ~1!#. These are very general and reasonable approxi
tions in numerous physical applications. The NLSE has b
derived in such different physical areas as plasmas, hydro
namics, nonlinear optics, fiber optics, solid state physics,
many others~see, e.g.,@1–6#!. Therefore, we hope that th
generalized momentum method to describe pulse evolu
in Eq. ~1! developed in this paper can find applications in
range of similar physical problems in which NLSE-bas
models occur. To be specific, we focus in this Rapid Co
munication on the optical applications of Eq.~1! ~see, e.g.,
@1–6# and references therein!. Then, normalized chromati
dispersion in Eq.~1! d(z)5d̃(z)1^d& represents the sum o
a rapidly varying~over one compensation period! high local
dispersiond̃(z) and a constant residual dispersion^d& (^d&
!d̃, ^d̃&50); c(z) accounts for power decay between a
plifiers due to fiber loss. Angular brackets mean averag
over compensation period. Lumped action of the amplifi
is accounted for through transformation of the pulse powe
junctions corresponding to locations of amplifiers. Equat
~1! possesses conserved quantityE5* uAu2dt that is the en-
ergy of the system.

The recently discovered dispersion-managed~DM! soli-
ton @7,8# ~or stretched pulse@9#! is a novel type of informa-
tion carrier with properties@7–28# drastically different from
that of a traditional fundamental soliton~soliton solution of
the integrable NLSE!. The advantage of the transmission
the soliton carrier signal is that it can be described by a
main parameters, such as pulse width, peak power, c
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parameter, and spectral width~the latter can be expresse
through pulse width and chirp parameter!. The particle-like
behavior of the solitary wave signal allows us to make use
a well developed mathematical method to understand
tures of a such carrier and to predict effects occurring du
practical boundary conditions and due to deviations of r
fiber properties from an ideal model. In the integrable a
near-integrable models evolution of these few main soli
parameters can be calculated using perturbation methods@1–
5,29#. In the general case some information can be gained
considering evolution of the integral quantities: differe
root-mean-square~RMS! momenta @1,30,31,12#. In this
Rapid Communication we present a generalized momen
method to describe the main RMS DM soliton characte
tics. The approach developed here is a generalization of
method suggested in our previous works@12,24,28#. This
simple and transparent method is very useful in the mode
of an arbitrary dispersion-managed fiber links that typica
involve many free parameters to be optimized.

To describe propagation dynamics of the main peak, le
consider, following@12# ~see also papers@30,31#, in which
the momentum method has been used in other conte!,
evolution of the integral~averaged over time! quantities re-
lated to the pulse width, RMS widthTint, and the integral
pulse chirpMint ,

Tint~z!5F* t2uAu2dt

* uAu2dt G1/2

,

Tint~z!Mint~z!5
i

4

* t~AAt* 2A* At!dt

* uAu2dt
. ~2!

Additional integral~averaged! pulse characteristics are roo
mean-square pulse spectral bandwidthVRMS and power
PRMS

VRMS
2 ~z!5

*v2uAu2dv

* uAu2dv
5

*~ uAu t!
2dt

* uAu2dt
1

*~arg~A! t!
2uAu2dt

* uAu2dt

5Vmod
2 1Vphase

2 ,

PRMS~z!5
* uAu4dt

* uAu2dt
. ~3!
R5264 © 1998 The American Physical Society



ase

RAPID COMMUNICATIONS

PRE 58 R5265GENERALIZED MOMENTUM METHOD TO DESCRIBE . . .
FIG. 1. First derivative over time of the pulse phase~pulse chirp! arg(A)t ~bold solid line! at z50.25. Thick solid line is for the soliton
power. Dashed line~function u*2t

1tuAu2dt/Eu) shows what part of the energyE is located in the interval from2t to t. In the inset is plotted
a function uAu4@arg(A)tt# ~dotted line! from Eq. ~6! shown atz50.25 and the same, but with the parabolic approximation of the ph

2uAu4f2 ~solid line!. Here and in the next figured(z)5d̃1^d&56510.15, c(z)51.
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Our goal is to derive~under minimal number of additiona
assumptions! a closed system of equations for the abo
RMS momenta. It is easy to check that the evolution
Tint(z) andMint(z) is given by

dTint

dz
54d~z!Mint~z!, ~4!

d

dz
~TintM int!5d~z!VRMS

2 2
c~z!

4
PRMS. ~5!

To derive equations onVRMS andPRMS let us first introduce
the following ancillary integral quantityWint(z),

Wint5 i
*@~AAt* !22~A* At!

2#dt

* uAu2dt
52

* uAu4@arg~A!# ttdt

* uAu2dt
.

~6!

Evolution equations onVRMS andPRMS then can be written
in a simple form,

d

dz
~VRMS

2 !5c~z!Wint ,
d

dz
PRMS52d~z!Wint . ~7!

The chirp ~a first time derivative of the phase! of the
typical DM pulses shows a linear behavior in the regi
where most of the energy is concentrated, as shown in Fi
The bold solid line is for the first derivative of the phase ov
time ~pulse chirp! arg(A)t taken atz50.25. The thick solid
line is for the soliton power. The dashed line~function
u*2t

1tuAu2dt/Eu) shows what part of the energyE is located in
the interval from2t to t. In the inset it is plotted a function
uAu4@arg(A)tt# ~dotted line! from Eq. ~6! shown atz50.25
and the same, but with the parabolic approximation of
phaseuAu4@arg(A)tt#ut5052uAu4f2 ~solid line!. Of course, as is
seen in Fig. 1, this is only a first approximation of the mo
complex phase picture and chirp is not linear at all in
whole time domain. However, note that the phase dep
f

1.
r

e
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dence appears in the above integral formulas only in
constructions likeuAu4@arg(A)#tt being multiplied byuAu4 or
other powers$such asuAu2t@arg(A)#t% of a fast decaying func-
tion uAu2. Therefore, the contribution in the integral puls
characteristics due to deviations from the parabolic~in time!
law in the phase is negligible in many practical situatio
~with highly localizeduAu2), as shown in the inset of Fig. 1
This is another justification of the use of a linear~in time!
approximation for the DM pulse chirp~first derivative of the
phase over time! in the energy-containing region~see
@12,24#!. Based on the above arguments, we now take a p
bolic approximation~and a fourth-order term as a next-ord
correction! of the phase near the pulse peak power locat
arg(A)(z,t)5(n50

` f2n(z)(t2t0)
2n'f0(z)1f2(z)(t2t0)

21f4(z)(t
2t0)

41¯ ~here,t0 is a position of the peak power, by add
tional transformation we always can sett050; therefore, in
what follows, t050). Then we immediately recognize
simple relation betweenWint andPint ,

Wint~z!52 (
n51

`

2n~2n21!f2nKn21

'22f2~z!PRMS~z!212f4~z!K11¯ . ~8!

Here,

Kn5
* t2nuAu4dt

* uAu2dt
, PRMS5K0 .

As a first step, neglecting now terms withf4 , we have
five equations for the six quantitiesTint , Mint , VRMS,
PRMS, Wint , andf2 . The missing last relation that is nec
essary to obtain a closed system of equations is given b
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Mint~z!

Tint~z!
5

i

4

* t~AAt* 2A* At!dt

* t2uAu2dt
5

* uAu2t@arg~A!# tdt

2* t2uAu2dt

5 (
n51

`

nf2nSn'f2~z!12f4~z!S21¯,

Sn5
* t2nuAu2dt

* t2uAu2dt
. ~9!

Thus, in the leading order, the closed system of RMS m
mentum equations is presented by Eqs.~4!, ~5!, ~7!–~9! @with
f450 in Eqs.~8! and ~9!#.

Next we demonstrate that effectively the derived RM
equations can be transformed to the basic model develo
in @12,24# ~first obtained in context of the cascaded transm
sion lines by Gabitov and Turitsyn in@8# using variational
approach!. Thus, the fundamental model obtained
@8,12,24# presents the basic mathematical tool to optim
any dispersion-managed fiber links. First note that equat
on PRMS andVRMS can be~after simple manipulations! in-
tegrated,

PRMS~z!Tint~z!5PRMS~0!Tint~0!5const1 , ~10!

VRMS
2 ~z!Tint

2 ~z!24Mint
2 ~z!Tint

2 ~z!

5Tint
2 ~0!@VRMS

2 ~0!24Mint
2 ~0!#5const2 .

~11!

As a particular result substituting now

VRMS
2 ~z!54Mint

2 ~z!1
const2
Tint

2 ~z!
~12!

and Eq. ~10! into Eq. ~5! we get exactly the same RMS
momentum equations onTint andMint as in @12,24,28#,

dTint

dz
54d~z!Mint~z!,

d

dz
Mint5

d~z!const2
Tint

3 2
c~z!const1

4Tint
2 . ~13!

This system of equations had been first obtained in the c
text of the optical signal propagation down the casca
transmission systems by Gabitov and Turitsyn in@8# using
variational approach and later in@12# using RMS momentum
method. The advantage of the approach presented in
Rapid Communication is that we have used onlyone as-
sumption about the structure~phase! of the DM pulse to
derive these basic equations. Below we justify this assu
tion by direct numerical simulations. Here we also link
each other all important integral~averaged over time! char-
acteristics of the optical pulse including RMS pulse wid
chirp, power, and spectral bandwidth.

The natural generalization of this procedure will be
consider evolution of the higher-orderKn andSn and to ac-
count for corresponding terms in the expansion of arg(A).
Making use of higher order momentum quantities and
suming thatf4 occurs as a small correction of the parabo
low in the phase~in terms of above discussion! we have a
generalized equation for the RMS pulse characteristics
higher-order momenta. Equations~4!, ~5!, ~8!, and~9! are the
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same@the latter two equations include now the terms withf4
~linear in f4)]. Equations~7! are modified as

d

dz
~Vmod

2 !528d~z!f2Vmod
2 124d~z!f4~122V2!,

here

V25
* t2~ uAu t!2dt

* uAu2dt
, ~14!

d

dz
~Vphase

2 !58d~z!f2Vmod
2 22c~z!f2PRMS

112f4@4d~z!V222d~z!2c~z!K1#,

~15!

d

dz
PRMS524d~z!f2PRMS224d~z!f4K1 . ~16!

These equations are supplemented by the relationsf2
!f4)

Vphase
2 54f2

2Tint
2 116f2f4S2Tint

2 ~17!

and

FIG. 2. Comparison of the RMS momentum~ODEs! model and
direct simulations of Eq.~1!. Dispersion mapd(z)56510.15 is
plotted above. Middle figure shows evolution ofTint @solid line:
ODEs model, triangles, Eq.~1!# andMint ~dashed line: ODEs RMS
model and crosses, PDE~1!#. In the bottom figure it is shown evo
lution of the RMS pulse powerPRMS @solid line is found from ODE
and the squares correspond to PDE~1!# and of the RMS spectra
bandwidthVRMS

2 @dashed line is for the solutions of ODEs an
triangles are found from Eq.~1!#.
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V25const3 ,
S2

Tint
2 5const4 ,

K1

Tint
5const5 . ~18!

The latter three relations have been obtained by integra
~in the leading order inf4!f2) of the equations for the
higher-order momentum. The derived system of equati
presents a generalization of the basic equations~13! account-
ing for the deviations from the parabolic approximation
the phase near the pulse peak.

Now we verify analytical results by numerical modelin
In Fig. 2 a comparison is shown of the evolution of the RM
pulse characteristics found by direct solving of Eq.~1! and
by solving RMS ordinary differential equations~ODEs! as
described above. True DM soliton dynamics is illustrated
the lossless model@c(z)51# and two-step map:d(z)5d
1^d& if 0 ,z,L1 and d(z)52d1^d& if L1,z,L. The
dynamics shown in Fig. 2 is ford55, ^d&50.15. A good
enough agreement between ODEs consideration and d
simulations of Eq.~1! confirms validity of the assumption
made above. Further improvement can be achieved con
ering next-order corrections.

Note that additional support to the above considerat
can be found in recent publications@26,28,27#, where it has
been developed an advantageous expansion of an arb
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DM pulse in the basis of chirped Gauss-Hermite functio
In a number of practical maps only a few terms~with the
dominating role of the self-similar zero mode! in such an
expansion are required to describe most of the impor
properties of the DM soliton. Therefore, as a first step,
phase of the DM soliton can be approximated in the cen
energy-containing part by the parabolic law~in time!. This
explains why the above method works so well. Equation~10!
manifests a self-similar relation between pulse power a
width.

In conclusion, we have presented a generalized RMS
mentum equations method to describe an optical pu
propagating in dispersion-managed systems. Our approa
based only on the one assumption of the parabolic appr
mation of the phase of DM pulse in the central energ
bearing part of solution. This assumption is justified by n
merical simulations showing an excellent agreement betw
simple RMS method consideration and direct simulatio
The simply formulated RMS momentum method can be v
useful for the massive numerical simulations required to
timize dispersion-managed fiber links.
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