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Generalized momentum method to describe high-frequency solitary wave propagation in systems
with varying dispersion
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We present a generalized momentum method to describe the evolution of the avendegd) pulse
characteristics in nonlinear systems with periodically modulated dispersion and nonlinearity. A closed system
of the ordinary differential equations is derived for averaged pulse power, width, and chirp. As a particular
example, the developed theory is applied to the practical problem of the optical soliton transmission in
dispersion-managed fiber linksS1063-651X98)51211-1

PACS numbg(s): 03.40.Kf, 42.65.Tg, 42.81.Dp

High-frequency pulse propagation in the nonlinear systenparameter, and spectral widtthe latter can be expressed
with Kerr-like nonlinearity and periodically varying disper- through pulse width and chirp parameteFhe particle-like
sion is governed by the nonlinear ScHimger equation behavior of the solitary wave signal allows us to make use of
(NLSE) with periodic coefficientsl(z) andc(z): a well developed mathematical method to understand fea-

: on tures of a such carrier and to predict effects occurring due to
IA;+d(2)Au+c(2)| A"A=0. (1) practical boundary conditions and due to deviations of real

This model is rather generic because it is derived under twgz(;_i'?]rt%p?;téeles :;?)rgeinel\(jglilti(r)nnog?lfhlgs;hfeewt;g;;b!seoligg
very general assumptions: first, a high carrier frequency of 9

the propagating wave packet and approximation of the disparameters can be calculated using perturbation mefieds

persion curve near the carrier frequency by paraljtiia 5,29. In the general case some information can be gained by
second term in EqJ1)], and second, the nonlinear part of the fggsﬁgggi euvgfrlg(}lqoth)Of r:]r(])emg;[; g{ilsgzinggeslzn dltﬁiesrent
refractive index is assumed to be proportional to the intensit;ha id Comn?unication we present a ,en,era’lized momentum
of the electric fieldKerr-type nonlinearity[the third term in P P 9

Eqg. (1)]. These are very general and reasonable approximi—”eth_?g to descnl:;}edthe Imalr(lj EMS .DM sohtonllchet\_ractefrltst;
tions in numerous physical applications. The NLSE has bee cs. 1he approach developed nere IS a generalization of the

derived in such different physical areas as plasmas, hydrodﬁ?ethOd suggested in our previous work,24,2§. This

namics, nonlinear optics, fiber optics, solid state physics, ana'mple an_d transparent method is very use_ful in the mo_dellng
many others(see, e.g.[1—6]). Therefore, we hope that the of an arbitrary dispersion-managed fiber links that typically

generalized momentum method to describe pulse evqutioWV_?lVi“j mar%/ free para;netzrs to b.e opftltrrr]nzed._ K let
in Eg. (1) developed in this paper can find applications in a 0 describe propagation dynamics ol Ih€ main peax, 1et us

range of similar physical problems in which NLSE-basedfr?nS'der’ fo:lowmg[%ﬁ] ésﬁe also paper[s‘gO.,SJ],trl]n Wh'%h t
models occur. To be specific, we focus in this Rapid Com- e momentum method has been used In other confexts
munication on the optical applications of Ed) (see, e.g., evolution of the mtegra(averaged_over tlrr)equantlfues re-
[1-6] and references therginThen, normalized chromatic lated to the pulse width, RMS widtix,, and the integral

~ I hirpMint
dispersion in Eq(1) d(z)=d(z)+(d) represents the sum of T oc PNt

a rapidly v~arying(over one compensation perjokigh local T (Z):[ftZIAIZdt} 12
dispersiond(z) and a constant residual dispersi@) ((d) nt JIAPdt |

<H (H)zO); c(_z) accounts for power decay between am- i [t(AAF —A*A)dt

plifiers due to fiber loss. Angular brackets mean averaging Tini(2Min(2)= 2 TTATdt : 2

over compensation period. Lumped action of the amplifiers
is accounted for through transformation of the pulse power a
junctions corresponding to locations of amplifiers. Equatio
(1) possesses conserved quankty [|A|?dt that is the en-
ergy of the system. RMS

The recently discovered dispersion-managbil) soli- ) Jo?|AlPdew  [(JA]p%dt  [(arg A),)?|Al%dt
ton [7,8] (or stretched pulsf9]) is a novel type of informa-  Qrmg(2)= MTAPdw — JIAI%dt + TTAZdt
tion carrier with propertie§7—28| drastically different from
that of a traditional fundamental solitgsoliton solution of =02 4t Qshase,
the integrable NLSE The advantage of the transmission of 4
the soliton carrier signal is that it can be described by a few Pryd2)= JIA[*dt &)
main parameters, such as pulse width, peak power, chirp RM f|A|2dt'

dditional integral(averagedl pulse characteristics are root-
mean-square pulse spectral bandwiddkys and power
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FIG. 1. First derivative over time of the pulse phdpelse chirp arg(d), (bold solid ling at z=0.25. Thick solid line is for the soliton
power. Dashed lin¢function|f *}|A|2dt/E|) shows what part of the enerdyis located in the interval from-t to t. In the inset is plotted
a function |A|*[arg(A),] (dotted ling from Eq. (6) shown atz=0.25 and the same, but with the parabolic approximation of the phase
2|A|*¢, (solid line). Here and in the next figuré(z)=d+ (d)=+5+0.15,c(z)=1.

Our goal is to derivdunder minimal number of additional dence appears in the above integral formulas only in the
assumptionsa closed system of equations for the aboveconstructions likg A|*[arg(d)]; being multiplied by|A|* or
RMS momenta. It is easy to check that the evolution ofother powergsuch agA|?t[arg(d)];} of a fast decaying func-

Tini(2) andM;,(2) is given by tion |A|2. Therefore, the contribution in the integral pulse
dT. characteristics due to deviations from the parab@tidime)
—'m=4d(z)Mim(z), (4 law in the phase is negligible in many practical situations

dz (with highly localized|A|?), as shown in the inset of Fig. 1.
gnly g
d c(2) This is another justification of the use of a lindar time)
d—Z(TimMim)=d(z)Q§Ms— 2 Prwms- (5)  approximation for the DM pulse chirfirst derivative of the

phase over time in the energy-containing regiorisee
[12,24). Based on the above arguments, we now take a para-
bolic approximationand a fourth-order term as a next-order
correction of the phase near the pulse peak power location
JIAAN)?=(A*A)?Idt  [|A]“Targ A) ]t argP)(zt) ==, oD (t—t)) "~ do(2d + $2(2 (t—to)*+ pa(D(t
int=1 JTAPdt - TTAZdt . —tg)*+- - (here,t, is a position of the peak power, by addi-
(6)  tional transformation we always can ggt=0; therefore, in
what follows, t;=0). Then we immediately recognize a
Evolution equations ofilgys andPgysthen can be written  simple relation betweeW,,, and P;,,
in a simple form,

To derive equations ofl gy sandPgyslet us first introduce
the following ancillary integral quantityV;,.(z),

2 _ _ o
d_Z(QRMS)_C(Z)Wint- d_ZPRMS_ 2d(2)Wine. () Wi(2)= _21 2n(2n—1) oK1
The chirp (a first time derivative of the phagef the ~—2¢x(2)Prud2) —12d4(2)K i+ . (8)

typical DM pulses shows a linear behavior in the region

where most of the energy is concentrated, as shown in Fig. 1.

The bold solid line is for the first derivative of the phase overyere,

time (pulse chirp arg), taken atz=0.25. The thick solid

line is for the soliton power. The dashed lif&nction

|S T} A|?dt/E|) shows what part of the ener@yis located in _JtAlMdt bk

the interval from—t to t. In the inset it is plotted a function N f|A]2dt 0 T RMST RO

|A|*[arg@)] (dotted ling from Eq. (6) shown atz=0.25

and the same, but with the parabolic approximation of the

phasd A|*l arg@®)qlli—o=2/A*¢, (solid ling). Of course, as is As a first step, neglecting now terms with,, we have
seen in Fig. 1, this is only a first approximation of the morefive equations for the six quantiti€,;, Mint, Qrums,
complex phase picture and chirp is not linear at all in thePgys, Wi, and ¢,. The missing last relation that is nec-
whole time domain. However, note that the phase deperessary to obtain a closed system of equations is given by
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Min(2) i JUAAF —A*A)dt  [|A]2t[arg A)] dt 5t
= — i 0 —
T(z) 4 [t?A]%dt 2[t?|A[%dt sL . . o
0.00 0.25 0.50 0.75 1.00

=n§1 NonSn~ b2(2)+2¢4(2) S+,

_JEPNAJAdt o
" TAR © N
Thus, in the leading order, the closed system of RMS mo- f‘

mentum equations is presented by Ed$, (5), (7)—(9) [with
¢,=0 in Egs.(8) and(9)].

Next we demonstrate that effectively the derived RMS
equations can be transformed to the basic model developed -1 .
in [12,24] (first obtained in context of the cascaded transmis- 0.00 0.25 0.50 0.75 1.00
sion lines by Gabitov and Turitsyn i8] using variational

approach Thus, the fundamental model obtained in 7 ODE ——— g
[8,12,24 presents the basic mathematical tool to optimize 0.8 v QZ:PDE - H
any dispersion-managed fiber links. First note that equations % 06 [ g
on Prus and Qrus can be(after simple manipulationsn- g 4 22
tegrated, g o4l & @
© L . [=]
PRMs<z>Tim<z>=PRMs<o Tin(0)=const, (10 5 ozfe Zugov” Voo¥ H
00— — 1 1 .11 0
RS Ti(2) =AM (2) Tiy(2) 0.0 0.2 0.4 0.6 0.8 1.0
Int(0)[() MS(O)—4Mim(0)]=cons§. A
(11 FIG. 2. Comparison of the RMS moment@DES model and

. o direct simulations of Eq(1). Dispersion mapl(z)==*+5+0.15 is
As a particular result substituting now plotted above. Middle figure shows evolution ©f,; [solid line:
Cons§ ODEs model, triangles, Eql)] andM;,,; (dashed line: ODEs RMS
Qud2)=4Mb, Z)+ @ (12)  model and crosses, PDE)]. In the bottom figure it is shown evo-
”“ lution of the RMS pulse powePg,,s[solid line is found from ODE
and Eq.(10) into Eq. (5) we getexactlythe same RMS and the squares correspond to POE| and of the RMS spectral

. 2 . . .
momentum equations ofi,; and M, as in[12,24,28, :)r?:ar]ndgl\,éitgnggaggaflf:;dEch(nl?] Is for the solutions of ODEs and

— = 4d(2)M (),

dz samg[the latter two equations include now the terms wijth
d d(2) @ (linear in ¢4)]. Equations(7) are modified as
z)consy c(z)cons
d_ int: T3 E_ 4T2 l (13) d 2 2
4 int int _Z(Qmod):_8d(z)¢29mod+ 24d(2) pa(1—2Q5),

This system of equations had been first obtained in the con-
text of the optical signal propagation down the cascadedere

transmission systems by Gabitov and Turitsyn &h using t2(|Al)2dt
variational approach and later[ib2] using RMS momentum Qo= (149
method. The advantage of the approach presented in this JIAl*dt
Rapid Communication is that we have used onlye as- d
sumption about the structurghase of the DM pulse to iz phase) 8d(2) .02 i~ 2¢(2) $2Prums
derive these basic equations. Below we justify this assump-
tion by direct numerical simulations. Here we also link to +12¢,4[4d(2)Q,—2d(z) —c(2)K4],
each other all important integrghveraged over timechar-
acteristics of the optical pulse including RMS pulse width, (15
chirp, power, and spectral bandwidth. d
The natural generalization of this procedure will be to d—ZPRms=—4d(Z)¢2PRMs— 24d(z) 4K . (16)

consider evolution of the higher-ordir, andS,, and to ac-
count for corresponding terms in the expansion of Ayg(
Making use of higher order momentum quantities and as._
suming that¢, occurs as a small correction of the parabolic
low in the phasgin terms of above discussipnve have a
generalized equation for the RMS pulse characteristics and
higher-order momenta. Equatio@, (5), (8), and(9) are the and

These equations are supplemented by the relatiahs (

<)
phase ¢ |nt+16¢2¢482T|nt (17)
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1 DM pulse in the basis of chirped Gauss-Hermite functions.
),=consg, Tz —consk, —=const. (18 In a number of practical maps only a few terrfvgith the
int nt dominating role of the self-similar zero mad such an
The latter three relations have been obtained by integratiogxpansion are required to describe most of the important
(in the leading order inp,<¢,) of the equations for the properties of the DM soliton. Therefore, as a first step, the
higher-order momentum. The derived system of equationphase of the DM soliton can be approximated in the central
presents a generalization of the basic equati@Bsaccount-  energy-containing part by the parabolic Idim time). This
ing for the deviations from the parabolic approximation of explains why the above method works so well. Equatitii
the phase near the pulse peak. manifests a self-similar relation between pulse power and
Now we verify analytical results by numerical modeling. width.
In Fig. 2 a comparison is shown of the evolution of the RMS  |n conclusion, we have presented a generalized RMS mo-
pulse characteristics found by direct solving of Ef). and  mentum equations method to describe an optical pulse
by solving RMS ordinary differential equatiod®DES as  propagating in dispersion-managed systems. Our approach is
described above. True DM soliton dynamics is illustrated fory;5eq only on the one assumption of the parabolic approxi-
the lossless modelc(z)=1] and two-step mapd(z)=d  mation of the phase of DM pulse in the central energy-
+(d) if 0<z<L, andd(z)=—d+(d) if L;<z<L. The  pearing part of solution. This assumption is justified by nu-
dynamics shown in Fig. 2 is fod=5, (d)=0.15. A good  merical simulations showing an excellent agreement between
enough agreement between ODEs consideration and diregfmple RMS method consideration and direct simulations.
simulations of Eq.(1) (_:onf|rms validity of the assumption The simply formulated RMS momentum method can be very
made above. Further improvement can be achieved consigseful for the massive numerical simulations required to op-

ering next-order corrections. _ _ timize dispersion-managed fiber links.
Note that additional support to the above consideration

can be found in recent publicatiofi86,28,21, where it has The support of RFBRGrant No. 96-02-19131}as ac-
been developed an advantageous expansion of an arbitrakpowledged.
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